GRADUATE PROGRAM IN
POPULATION BIOLOGY, ECOLOGY, AND EVOLUTION
EMORY UNIVERSITY

STUDENT AND FACULTY GUIDE

REVISED: MAY 2015
# Table of Contents

I. Purpose and Goals of the Graduate Program

   A. Bioinformatics and Biostatistics
   B. Biology of Species Interactions
   C. Disease Ecology
   D. Ecological and Evolutionary Modeling
   E. Genetics of Complex Traits
   F. Population and Comparative Genomics

II. Philosophy of Graduate Training

III. Program Director and Executive Committee

IV. Admission Overview

   A. Admission Criteria
      1. Graduate Record Examination
      2. Undergraduate Curriculum
      3. Letters of Recommendation
      4. Statement of Goals
      5. Evaluation of Candidates
   B. After Admission to PBEE
   C. On Arrival

D. International Students and Language Requirements

V. Advising

VI. Laboratory Research Rotations

VII. Courses and Related Program Requirements

   A. Overview of Course Registration
   B. Required Courses
      1. IBS 594  Evolutionary Biology (fall semester, every even year)
      2. IBS 593  Population & Quantitative Genetics (every spring semester, required for 1st Years)
      3. IBS 595  Ecology (fall semester, every odd year)
      4. IBS 592  Quantitative Methods in PBEE (Spring Semester, every even year)
      5. IBS 796R Advanced Topics in PBEE
   6. PBEE Statistics Requirement
   7. PBEE Graduate Seminar
   8. Laboratory Rotations
   9. Credit Hours
   C. Typical Student Schedules
      1. First Year: Fall Semester
      2. First Year: Spring Semester
      3. First Year: Summer Semester
      4. Second Year: Fall Semester
      5. Second Year: Spring Semester
      6. Third Year and Beyond: Fall and Spring Semesters
   E. Elective Courses
A. Beyond the Ph.D.................................................................35
B. Poor Performance..............................................................35
XXVII. University Requirements and Other Policies........................................35
Appendix........................................................................................36
A1. PBEE Graduate Student Timeline and Milestones............................................36
I. Purpose and Goals of the Graduate Program

“The most interesting parameter in the statistics of natural populations is the actual variation, its amount, and its nature. The amount of variation is different from character to character and from species to species. Darwin could not have arrived at a theory of natural selection if he had not adopted populational thinking.”

Ernst Mayr
The Growth of Biological Thought
Harvard University Press (1982)
p47

Ernst Mayr argued that Darwin’s key contribution to the foundation of biological thought lay in the recognition of individual variation within populations. Darwin’s adoption of “populational thinking” dramatically changed the biological sciences, opening new avenues of research focused on understanding the basis, causes, maintenance, dynamics, and effects of variation in natural populations. These fundamental questions drive the research of the students and faculty members who form the graduate program in Population Biology, Ecology and Evolution (PBEE).

Research topics pursued by PBEE faculty members, postdoctoral fellows, and graduate students are truly diverse. One central feature unites our program: the focus on the use of quantitative methods and models during the course of our research. This theme is reflected in the design of our core curriculum and the types of research projects pursued by our trainees. Our faculty are committed to pursuing innovative, interdisciplinary research and instruction that cuts across boundary lines dividing traditional disciplines and provides a rich educational experience for our students. Our focus on quantitative methods and models sets us apart from other graduate programs in the Graduate Division of Biological and Biomedical Sciences (GDBBS) and influences the types of graduate students and postdoctoral fellows we recruit into the program. Our program includes six main areas of inquiry, which broadly encompass major areas of research pursued by our graduate students, postdoctoral fellows, and faculty mentors. These include (in alphabetical order):

A. Bioinformatics and Biostatistics
The rapid increase in the size and complexity of population biology datasets require novel tools and improved methods of analysis, visualization and data handling. Developing and critically evaluating these tools and approaches is a core focus of faculty performing research in this area of inquiry. The types of population biology problems addressed are diverse. Some of these include inventing improved methods of genetic mapping for genome-wide association and family-based linkage studies and developing software frameworks for analyzing large genomics datasets.

Keywords: bioinformatics, family-based linkage, genome assembly and annotation, genome-wide association, microbiome, high throughput sequencing data analysis, quantitative genetics, spatial statistics, statistical genetics

B. Biology of Species Interactions
Interactions between species, whether beneficial or harmful, are ubiquitous in nature. These interactions may include two players (e.g. a host and its bacterial symbiont), multiple players (e.g. butterflies, their larval food plants and protozoan parasites) or an entire community (e.g. plant-pollinator networks at the landscape scale). Faculty performing research in this area use experimental approaches, including experimental evolution, to understand the dynamics of these interactions and the importance of ecological context in shaping these interactions. We also use genetic and genomic approaches to uncover population structure, molecular mechanisms and genetic variation underlying the traits that shape species interactions. A major aim of our work is to understand how such interactions drive the population dynamics and evolution of the respective species, and we use this biological understanding to apply our work to conservation and management questions in a variety of settings.
C. Disease Ecology
The major focus of disease ecology is to gain a greater understanding of how diseases spread, the interactions between the hosts, pathogens and environment, and ultimately the types of changes observed in natural populations. Faculty performing research in this area use experimental and model-based approaches to address a diverse collection of problems with the goal of gaining a greater understanding of the spatio-temporal dynamics of disease. Problems addressed include the phylogenetic history and origin of pathogens, the population dynamics and control of infectious diseases, and the processes contributing to the evolution of drug resistance.

Keywords: eco-epidemiology, immunity, landscape genetics, microbiome, molecular epidemiology, vector-borne diseases, virulence evolution, within-host dynamics, zoonotic diseases

D. Ecological and Evolutionary Modeling
Mathematical modeling of complex ecological and evolutionary processes can provide unique insights to biological systems, help elucidate unanticipated processes at work in populations, and provide testable predictions for empirical studies. Building and evaluating such models is central to research in this area of inquiry. Faculty performing research in this area use mathematical models to address a diverse collection of problems. These include within-host dynamics of the immune response, the evolution of drug resistance, models describing the spatial-temporal dynamics of infectious diseases, and dynamics of microbial populations.

Keywords: community ecology, evolution of drug resistance, microbial population dynamics, phylodynamics, spatial dynamics, transmission dynamics, within-host dynamics
E. Genetics of Complex Traits
Understanding the genetic basis of complex traits is a central challenge in contemporary biology. Research in this area aims to combine the latest genomics technologies with sophisticated statistical models in order to better understand the how genomic variation leads to the phenotypic diversity observed in natural populations. Faculty performing research in this area address a wide variety of problems. These include the nature of complex disease traits in contemporary human populations, the genetic basis of pathogen virulence and toxin resistance, and the structure, replication and segregation of chromosomes.
Keywords: adaptation, diversification, epigenetics, genetics, genetic mapping, genome-wide association, human disease, human genetics, immunity, infectious disease, population genomics, quantitative genetics, resequencing, next-generation sequencing technologies, speciation, targeted enrichment, transcriptome

F. Population and Comparative Genomics
Characterizing the patterns of genomic variation within and between species is a major goal of this research area. We explore how these data can be used to test evolutionary hypotheses and identify genomic regions with unusual or novel functions. Faculty performing research in this area work in a variety of systems, use the latest next-generation sequencing and genotyping technologies, and analyze data using bioinformatic and computational biology tools.
Keywords: chromosome structure, copy number variation, demographic inference, evolution of gene regulation, genome structure and function, human genomics, insertion-deletion variation, microbial genomics, positive and negative selection, second-generation sequencing technologies, single nucleotide polymorphisms

These broad areas of inquiry are uniquely contained within the Emory University Graduate Program in Population Biology, Ecology, and Evolution (PBEE), which is part of the Graduate Division of Biological and Biomedical Sciences (GDBBS), within the Laney Graduate School (LGS). Program faculty are members of the Emory College of Arts and Sciences (Departments of Anthropology, Biology, Chemistry, Environmental Science, Psychology, and Physics), the Emory University School of Medicine (Departments of Human Genetics, Medicine, Microbiology & Immunology, Neurology, Pediatrics, and Psychiatry), the Emory Rollins School of Public Health (Departments of Biostatistics & Bioinformatics, Environmental Health, Global Health), the Yerkes National Primate Research Center, the Emory National Vaccine Center, and the U.S. Centers for Disease Control & Prevention (CDC). A complete listing of PBEE faculty members can be found at http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/faculty.htm. A detailed description of all aspects of the PBEE program can be found on the program’s website (http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/).

II. Philosophy of Graduate Training
The graduate program in PBEE provides multidisciplinary, research-focused training with a number of overarching goals. First, we require that students become proficient at reading and critically evaluating the primary scientific literature. This includes both older, seminal papers and more current, cutting-edge manuscripts. Given the vast PBEE literature, both in terms of subject areas and historical depth, this can prove a real challenge. We want students to develop their critical thinking in order to devise multiple alternative hypotheses that can then be tested in their own dissertation research. The ultimate goal is to enable each student to “think like a scientist“ and remain focused on the significant questions their research aims to explore. We strongly believe this type of training is essential for our graduate students to pursue successful research and teaching career.

Our formal training program contains three main areas of emphasis that mutually reinforce one another and are vital to the development of graduate students. The first area consists of an academically challenging set of graduate-level core courses that require students to learn the history of the field in addition to currently accepted scientific facts and
theories. The formal course work is intended to provide basic knowledge as well as guidance for self-education by the student scholar. Such self-education is a full-time job and must be an active rather than a passive process.

The second area is designed to help students develop their oral and written communication skills and hone their ability to critically evaluate the scientific literature. This is accomplished in a variety of ways including mandatory attendance at a weekly PBEE seminar, student presentations of their own research work to the PBEE faculty and students, and participation in small group Advanced Topics courses led by PBEE faculty members.

Our third area of emphasis focuses on teaching graduate students how to plan, conduct, and assess primary research, with an eye toward preparing to make original scientific contributions. First-year students perform laboratory rotations with up to three different faculty members in order to gauge different perspectives and approaches to the performance of scientific research. Ultimately, most of the individualized instruction required for this aim occurs as a result of interactions between students and their advisors, in an atmosphere of cooperative research and discovery. The overall goal of this three-pronged multidisciplinary training program is to develop superb research scientists with the skills to become self-sufficient in continuing education beyond graduate school. The program also prepares the student to teach PBEE and other related disciplines in professional and graduate schools.
III. Program Director and Executive Committee

The graduate program in PBEE is coordinated by a member of the program faculty who serves as Program Director (PD). In conjunction with the Director of Graduate Studies (DGS) and the Executive Committee, the PD is also responsible for coordinating faculty in monitoring the performance of students, scheduling and organizing the qualifying examination, overseeing selection of research advisors and dissertation committees, and is the representative of the program to the Graduate School Executive Committee which oversees policy and curricular matters. The PD and Executive Committee are responsible for providing information on the graduate program to prospective applicants, overseeing admissions, and working with each student to develop an appropriate program of study in the early stages of training before the selection of a research advisor.

The PD serves a three-year term with the possibility of renewal for an additional three years, beginning on June 1 and ending May 31. Nominations for the position of PD are solicited from faculty in the program and final selection is made by the Executive Committee. The DGS also serves a three year term with the possibility of renewal for an additional three years, beginning on June 1 and ending May 31. The PD and DGS may both change in a given year, although we prefer to have these positions roll over in different years.

The Executive Committee has 13 members total: 11 faculty and 2 graduate students. The PD, DGS, Principal Investigator of the PBEE training grant, Curriculum Committee Director, Recruiting Director, and Seminar Director are automatically members of the Executive Committee. The other faculty members are selected by the PBEE faculty. The Executive Committee terms will be for three years beginning on June 1 and ending on May 31. Terms of Executive Committee members may be renewed. Typically no more than two new members are elected each year. Two PBEE graduate students are elected by their peers to serve on the Executive Committee. Their terms will be two years in length and also begin on June 1 and end on May 31. See Appendix A1 for the listing of the PBEE Executive Committee members.
IV. Admission Overview

A. Admission Criteria
Admission information can be obtained from the Laney Graduate School website (http://www.gs.emory.edu/admissions/index.html) and from the Graduate Division of Biological and Biomedical Sciences (GDBBS) website (http://www.biomed.emory.edu/admissions/index.html). The usual admission deadline is December 1 for admission the following autumn. Each applicant is judged on the merits of his or her overall record. A minor deficiency in any one area will not necessarily exclude the applicant from admission, especially if compensated for by exceptional strength in other areas. The specific criteria examined include:

1. Graduate Record Examination
All applicants are required to take the Graduate Record Examination (GRE). There are no set minimums for GRE scores. Advanced sections are not required. International applicants whose native language is not English must also complete the Test of English as a Foreign Language (TOEFL).

2. Undergraduate Curriculum
Our most competitive applicants demonstrate superior performance in challenging and well-rounded undergraduate educational experiences that can be found at a wide variety of small and large educational institutions. We particularly wish to recruit students with strong backgrounds in quantitative fields. Preference will be given to applicants who have taken courses in biology, genetics, chemistry (physical, organic, biochemistry), mathematics (calculus, statistics, linear algebra), and physics. Undergraduate research experience is also looked upon favorably and should be emphasized by the applicant. Applicants should have an overall undergraduate grade point average (GPA) of “B” or better (i.e., at least 3.0 on a scale of A = 4.0). Applicants who have taken graduate-level courses should have at least a “B” average in these.

3. Letters of Recommendation
Three evaluations are required from individuals who are familiar with the applicant and his or her capabilities. Considerable weight is given to recommendations by faculty members or others who have first-hand knowledge of the academic and research potential of the applicant.

4. Statement of Goals
Applicants should provide a clear, concise statement of their reasons for wanting to enter the graduate program in Population Biology, Ecology, and Evolution. They should also indicate how such training fits into their long-range career goals.

5. Evaluation of Candidates
Completed applications are evaluated by a committee comprised of PBEE faculty. Interviews with the applicant during a special recruiting weekend, usually held in February, is also a critical part of the application process. Typically, no more than ten students can be admitted to the program each year, and generally in the Fall semester.

B. After Admission to PBEE
Admitted students should expect to receive information from the LGS, the GDBBS, and the PBEE program after accepting an offer of admission to the PBEE program at Emory. The LGS and GDBBS will send information to
incoming students during the spring and summer before the beginning of the fall semester to assist them with finding housing and registering for classes. The PBEE program will also be contacting incoming students to share important information. Incoming students should immediately begin to identify and contact faculty they may wish to rotate with. It is critical that incoming students ensure that they have a working email address where they may be contacted.

C. On Arrival
Students are typically registered for classes by the PBEE program and GDBBS prior to their arrival in Atlanta. Nevertheless, upon arrival in Atlanta, the new graduate student should contact the PBEE program administrator, the DGS and the PD in order to answer any questions and confirm the scheduling of courses and orientation. Students will also need to obtain an Emory ID card and check in at the GDBBS office. Newly arrived students must also make arrangements for and meet with faculty supervising their Fall semester rotation projects. There will be a reception at the beginning of the term for the new students and the other students and faculty of the program to get acquainted and cover various aspects of the program.

D. International Students and Language Requirements
The policy of the LGS is that all new international students must participate in English language assessments prior to registration and enrollment. Evaluations may occur over the telephone or by direct assessment by a team of linguistics experts. If deemed necessary, students must complete the English as a Second Language Program that includes two required courses. Further information about the can be obtained the LGS website (http://gs.emory.edu/academics/elsp/index.html).

V. Advising
The timeline and major milestones for a PBEE graduate student can be found in Appendix A2. Upon entering the program in Population Biology, Ecology, and Evolution, the DGS will serve as a temporary advisor until each student has chosen a thesis advisor. A tentative thesis advisor should be chosen and approved by the DGS following the completion of the student’s first academic year (prior to the summer of their first year) as detailed below. A final thesis advisor is selected after the successful completion of the qualifying examination.

VI. Laboratory Research Rotations
During the first year in the program each student will have a chance to perform experimental work in faculty laboratories. These laboratory "rotations" provide students with an early opportunity for research experience and are designed to expose the student to different research approaches. These laboratory experiences will help familiarize the student with some of the many techniques used to examine research problems in population biology. As such, the rotations can help define a student's own research interests. This is an important first step in determining an area for a thesis project and the selection of a research advisor, although the choice of advisor is certainly not limited to those faculty members with whom the student rotated. The laboratory research rotations also give the faculty an opportunity to observe and evaluate the performance of first-year students in a research setting. Laboratory rotations can be performed with any faculty member in the Division, irrespective of the program affiliation of that faculty member, with the approval of the DGS.

Students are typically required to complete a total of three laboratory rotations. In some instances, students entering the program with significant prior research experience may be allowed to perform only two rotations at the discretion of the PD and DGS. Students interested in performing fewer than the usual three rotations should make an
appointment to speak with the PD and/or DGS. During the semester in which the students satisfy a rotation requirement they should register for IBS 597R (Laboratory Rotations) for a letter grade. MD/PhD students normally complete their rotations during the summer around their required health science classes in the Medical School. In rare instances, students may perform their first rotation in the summer prior to their first semester of classes.

The three rotations will be completed during the Fall and Spring academic semesters during the student’s first year in graduate school. The three rotations are completed according to the following schedule:

- **First Rotation:** Start of Classes (usually end of August) - 31 October
- **Second Rotation:** 1 November - 31 January
- **Third Rotation:** 1 Feb - 30 April

Incoming first year students should choose and directly contact three or four PBEE faculty members whose research interests them during the summer before they begin graduate school at Emory. The PD, DGS, and PA can also be contacted to help an incoming student arrange for laboratory rotations. In arranging these rotations, every attempt will be made to accommodate students who are already interested in the research programs of particular faculty members. Students should also arrange to meet with these faculty members during the beginning of the fall semester. Based on these meetings, each student can make an informed decision as to the most appropriate lab for the first rotation.

After selecting a rotation advisor, each student must submit the PBEE Rotation Plan form to the PA. This form is available on the PBEE website (http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/student-resources/index.html). **This proposal is a brief (one-page) description of the planned research and should be signed and dated by both the student and the rotation advisor.** Students who wish to perform a rotation in the laboratory of someone who is not a member of the Graduate Program in Population Biology, Ecology, and Evolution must receive prior approval from the DGS or PD.

At the end of each rotation students are required to submit a report of progress made during the rotation to the DGS. This form is available on the PBEE website (http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/student-resources/index.html). **The rotation summary should be signed and dated by both the student and the rotation advisor. The rotation advisor should assign the student a letter grade that should emailed directly to the DGS. The rotation report and grade should be submitted to the PA at the completion of the rotation.** Although in many cases little experimental progress will be made by the student in such a short period of time, the final summary can be useful for discussing analytical or methodological problems that were encountered during the rotation. The summary should be succinctly written and no more than one page in length. Students who have not submitted a rotation report by the due date will receive an incomplete for the rotation. According to LGS guidelines, any student who receives an incomplete for two or more courses will be automatically placed on probation within the graduate program. If the rotation report is not received within two weeks of the end of the semester, the incomplete will be changed to an F. Please refer to the LGS handbook for additional details.
VII. Courses and Related Program Requirements

A. Overview of Course Registration
During any given semester each PBEE student must register for at least 9 credit hours to maintain status as a full-time student. During the first two years in graduate school, this is accomplished by registering for a combination of formal courses, seminars, and research credits for time spent in the laboratory. From the third year onwards after a student advances to candidacy, this is usually accomplished largely by registering for research, seminar, and limited formal course credits.

B. Required Courses
The overall course requirements to obtain a Ph.D. are published in the LGS Handbook. The following core courses are required for all PBEE students:

1. IBS 594 Evolutionary Biology (fall semester, every even year)
2. IBS 593 Population & Quantitative Genetics (every spring semester, required in first or second year, recommended that it be taken after taking IBS 594)
3. IBS 595 Ecology (fall semester, every odd year)
4. IBS 592 Quantitative Methods in PBEE (Spring Semester, every even year)
5. IBS 796R Advanced Topics in PBEE
Students must enroll and successfully complete in a single semester Advanced Topics class prior to advancing to candidacy. These are typically 2-credit classes.

6. PBEE Statistics Requirement
The program in PBEE requires a minimum of one year of statistics. Course descriptions can be found at the following website [http://www.sph.emory.edu/cms/departments_centers/bios/course_descriptions.html]. There are two paths that can be pursued to fulfill this requirement. The first consists of:

BIOS 506 Biostatistical Methods I - Fall - 4 credit hours
BIOS 507 Applied Linear Models - Spring - 4 credit hours

Students will be given an opportunity to evaluate their knowledge and background in statistics and may choose to skip BIOS 506 if they believe they have an adequate grounding in statistics. In our experience, many of our students have a sufficient background and BIOS 506 may prove too basic. However, in some cases, students find the course very useful. The DGS can provide a set of representative homework questions from BIOS 506 that student can examine and decide for themselves their best way forward.

The second path to fulfill this requirement is:

BIOS 510 Probability Theory I – Fall – 4 credit hours
BIOS 511 Statistical Inference I – Spring – 4 credit hours

The second path consists of courses that are best for students interested in population genetics. They tend to be more extensive and in depth than the BIOS 506/507 path. These courses will typically be taken during the first
year. In the unusual event that a student has an exceptional background in statistics, then the student should contact the DGS and PD to substitute other appropriate courses or waive this requirement.

7. PBEE Graduate Seminar
All PBEE graduate students must enroll in the PBEE Advanced Graduate Seminar (PBEE 790R) every semester. In addition to attending the PBEE seminars, students are required to provide the DGS a single written question concerning the content of the seminar. These questions are returned to the speaker after the seminar.

PBEE graduate students in their third year and beyond are required to give a 15-minute presentation during the PBEE seminar, followed by question and answer session. Typically three students will give a presentation during a single seminar period. Typically, third year students (who have passed their qualifying examination in the spring of their second year) are scheduled to give their seminar in the spring. The seminar for third year students should include both their plans and progress to date, recognizing that they may just be beginning their research and the data they have generated may be limited. Fourth year and beyond students are scheduled to present their seminar in either the Fall or Spring semesters. The seminar for fourth year and beyond students usually is more focused on the research progress achieved by the student. The PBEE Seminar Director and PBEE Seminar Committee, with the assistance of the Program Administrator, are responsible for scheduling seminars for each academic year.

8. Laboratory Rotations
During their first two semesters in graduate school when students are performing laboratory rotations, they should register for PBEE 597R (Laboratory Rotations) for 3 credit hours. After the first year in graduate school, students should not continue to register for PBEE 597R. Students will begin each laboratory rotation with a written agreement between supervisor and student outlining the specific goals of the rotation. During the course of the rotation, the research advisor will ensure that these goals are met. Successful completion of the rotation requires that the student to provide a written summary of the completed research experiences.

9. Credit Hours
Each student is required to sign up for at least 9 credits each semester. Students wishing to gain additional background in specific areas (for example mathematics, statistics, or probability) can take additional courses. If students wish to exceed 16 credit hours in a semester, they must obtain permission from the DGS.
C. Typical Student Schedules

A typical schedule showing the minimum required courses for the first two years of study would be the following:

1. First Year: Fall Semester

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Credits</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 506</td>
<td>Biostatistical Methods I</td>
<td>4</td>
<td>Various</td>
</tr>
<tr>
<td>IBS 594</td>
<td>Evolutionary Biology</td>
<td>4</td>
<td>Program Faculty</td>
</tr>
<tr>
<td>IBS 796R</td>
<td>Advanced Topics in PBEE (as needed/offered)</td>
<td>2</td>
<td>Program Faculty</td>
</tr>
<tr>
<td>PBEE 597R</td>
<td>Laboratory Rotation</td>
<td>3</td>
<td>Program Faculty</td>
</tr>
<tr>
<td>PBEE 790R</td>
<td>Advanced Graduate Seminar</td>
<td>1</td>
<td>DGS</td>
</tr>
</tbody>
</table>

Note: Students need to submit the Rotation Plan Form (prior to beginning a rotation) and Rotation Summary Form (upon the completion of a summary).

2. First Year: Spring Semester

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Credits</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 507</td>
<td>Applied Linear Models</td>
<td>4</td>
<td>Various</td>
</tr>
<tr>
<td>IBS 593</td>
<td>Population and Quantitative Genetics</td>
<td>4</td>
<td>Program Faculty</td>
</tr>
<tr>
<td>IBS 796R</td>
<td>Advanced Topics in PBEE (as needed/offered)</td>
<td>2</td>
<td>Program Faculty</td>
</tr>
<tr>
<td>PBEE 597R</td>
<td>Laboratory Rotation</td>
<td>3</td>
<td>Program Faculty</td>
</tr>
<tr>
<td>PBEE 790R</td>
<td>Advanced Graduate Seminar</td>
<td>1</td>
<td>DGS</td>
</tr>
</tbody>
</table>

Note: Students need to submit the Rotation Plan Form (prior to beginning a rotation) and Rotation Summary Form (upon the completion of a summary).

3. First Year: Summer Semester

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Credits</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES 999GSAS</td>
<td>Graduate Residence</td>
<td>9</td>
<td>DGS</td>
</tr>
</tbody>
</table>

During each summer term students should register for GRAD 004S (Graduate Residence). The goal is to have students join a laboratory during their first summer in order to begin their research. In some cases, the students may perform an additional rotation at a remote field site over the summer. This should be coordinated with the relevant PBEE faculty member and the DGS.
### 4. Second Year: Fall Semester

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Credits</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBS 595</td>
<td>Ecology</td>
<td>4</td>
<td>Program Faculty</td>
</tr>
<tr>
<td>IBS 796R</td>
<td>Advanced Topics in PBEE (as needed/offered)</td>
<td>2</td>
<td>Program Faculty</td>
</tr>
<tr>
<td>PBEE 790R</td>
<td>Advanced Graduate Seminar</td>
<td>1</td>
<td>DGS</td>
</tr>
<tr>
<td>IBS 699R</td>
<td>PBEE Advanced Graduate Research</td>
<td>1-9</td>
<td>DGS</td>
</tr>
<tr>
<td>Various</td>
<td>Course Electives (as interested)</td>
<td>Var</td>
<td>Various</td>
</tr>
</tbody>
</table>

### 5. Second Year: Spring Semester

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Credits</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBS 592</td>
<td>Quantitative Methods in PBEE</td>
<td>4</td>
<td>Program Faculty</td>
</tr>
<tr>
<td>IBS 796R</td>
<td>Advanced Topics in PBEE (as needed/offered)</td>
<td>2</td>
<td>Program Faculty</td>
</tr>
<tr>
<td>PBEE 790R</td>
<td>Advanced Graduate Seminar</td>
<td>1</td>
<td>DGS</td>
</tr>
<tr>
<td>IBS 699R</td>
<td>PBEE Advanced Graduate Research</td>
<td>1-9</td>
<td>DGS</td>
</tr>
<tr>
<td>Various</td>
<td>Course Electives (as interested)</td>
<td>Var</td>
<td>Various</td>
</tr>
</tbody>
</table>

### 6. Third Year and Beyond: Fall and Spring Semesters

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Credits</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBEE 790R</td>
<td>Advanced Graduate Seminar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PBEE 799R</td>
<td>Dissertation Research</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>IBS 796R</td>
<td>Advanced Topics in PBEE (as needed/offered)</td>
<td>2</td>
<td>Program Faculty</td>
</tr>
<tr>
<td>Various</td>
<td>Course Electives (as interested)</td>
<td>Var</td>
<td>Various</td>
</tr>
</tbody>
</table>

**Note:** After a student passes their qualifying examinations and advances to candidacy (which requires that all requirements be completed and is formally approved by the Dean of the LGS), they should register for PBEE 799R (replacing IBS 699R).
D. Policies for MD/Ph.D. students
M.D./Ph.D. students have less time than a typical graduate student to complete course requirements and finish their doctoral dissertation. As a consequence, their required course selection may be modified or accelerated to ensure they can complete their dissertation. Typically M.D./Ph.D. students will spend their first 18 months in medical school and join the PBEE during the January of their second year in medical school. At this point, the student should meet with the PBEE Director and DGS to plan their course schedule for the next year. The goal is for them to pass their written and oral qualifying examination at the end of the spring semester of their third year at Emory. Specific policies include:

M.D./Ph.D. students are required to take the Advanced Graduate Seminar (PBEE 790) each semester until they complete their dissertation.

M.D./Ph.D students will be required to take the two core courses (IBS 593/IBS 594 or IBS 592/IBS 595) being taught during their third year at Emory. They will be required to demonstrate proficiency in the core courses not being taught that year. The DGS and course directors will work with them to provide them resources to learn the material that they will need to know for their written and oral qualifying examination.

Laboratory rotations will be performed over the summer and/or during their first full year in the PBEE program. M.D./Ph.D. students are required to submit Rotation Plan Form (prior to starting a rotation) and a Rotation Summary Form (after the completion of the rotation). These rotations may be abbreviated if needed. M.D./Ph.D. students are required to successfully complete one advanced topics courses. This suggested curriculum for a M.D./Ph.D. student will be coordinated and approved by the DGS.

E. Elective Courses
Students may also enhance their education and meet the minimum course credit requirements of the LGS by taking a personalized selection of the many elective courses available.

F. Research Credits
After their first year in graduate school, but before they advance to candidacy (which usually occurs after the end of the third year), students should register for IBS 699R to account for their research work. This is for variable credit and the number of credit hours registered for should be the number needed to bring the total (with formal courses) to at least 9 credit hours each semester. After a student has advanced to candidacy and selected a permanent research advisor, they should register for PBEE 799R (Dissertation Research). This is for variable credit and the number of credit hours registered for should be the number needed to bring the total (with formal courses) to at least 9 credit hours each semester.

G. Journal Club and Common Interest Groups
One of the most effective ways to learn methods and approaches to scientific inquiry is to read and critique the experimental work published by other investigators. Students are required to attend the PBEE Student-Faculty Forums (held during weekly seminar) and urged to participate in laboratory meetings as a means of interacting with faculty and developing critical scientific skills. Students can also spearhead Advanced Topics Courses (IBS 796R) by identifying topics of interest and faculty members to help lead these courses.

H. Exemptions From Course Requirements
Students may be exempted from taking one or more of the required courses under appropriate circumstances. Such circumstances usually consist of having taken a prior course with similar content and received a grade of “B” or
better, or demonstration of competence in a particular area (usually by special examination). The DGS, in consultation with the PD, will make the final decision about any course exemption.

VIII. Grades

The scale of grades in the LGS is A (4.0), B (3.0), C (2.0) and F (0); there is no D grade. Some courses are taken on a Satisfactory/Unsatisfactory (S/U) basis. All students must maintain a minimum GPA of 3.0 in each semester of graduate work. If a student's semester GPA is below 3.0 in any semester, that student will be on academic probation with the expectation that he or she will maintain a semester GPA of 3.0 in all subsequent semesters. If a student's semester GPA is below 3.0 in any two semesters (contiguous or not) or if the student receives one F or U grade in any course, that student will be asked to withdraw from the program and the Division. If students who are asked to withdraw believe that there were extenuating circumstances that adversely affected their performance, they may submit a written appeal for consideration of reinstatement to the DGS. The appeal should clearly outline the extenuating circumstances and must be submitted within one month of grades being recorded by the Office of the Registrar. All appeals will be reviewed by the PD, PBEE Executive Committee, and the GDBBS Executive Committee. If both the PBEE and GDBBS Executive Committees approve reinstatement, the student will be expected to maintain a GPA of 3.0 in every subsequent semester. If the student had received a C or F in a core PBEE course, the course must be repeated and a passing grade (3.0 or higher) obtained. At the discretion of the program, a failing grade in other required courses may also necessitate repeating the course. To advance to candidacy, the student must have a cumulative GPA of at least 3.0 after six semesters. Please refer to the LGS handbook for further information about grades.
IX. Selection of Research Advisor

Students must select a research advisor from among the faculty of the Graduate Division of Biological and Biomedical Sciences (GDBBS) at the end of the Spring semester during their first year. Students entering in Advanced Standing, for example those with a Master’s degree, may in consultation choose their advisors immediately, or after optional rotations as discussed above. Additionally, students who join the PBEE program as a member of a laboratory of a faculty member joining Emory University may be excused from laboratory rotations by the DGS. The advisor will guide them to the completion of their qualifying examination and serve on the exam committee.

The student and the faculty dissertation research advisor will submit the GDBBS Mentor Assignment Agreement to the DGS. This document formalizes all mentor assignments in the GDBBS and indicates that the advisor will be responsible for supporting the student financially. All choices of dissertation research advisors are subject to final approval by the PD, PBEE Executive Committee, and the advisor’s Department Chair. Both forms can be found on the PBEE website (http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/student-resources/index.html).

Students interested in choosing as their research advisor an adjunct PBEE faculty member (such as one whose main appointment is with the CDC or Georgia Tech) must also choose a PBEE Emory faculty member as a co-advisor. The Emory co-advisor should be a member of the student’s dissertation committee. The student and the PBEE Emory co-advisor must provide the DGS a letter indicating that the PBEE Emory faculty member is willing to accept this responsibility. The Emory co-advisor’s role is to ensure that the PBEE student’s dissertation research meets standards identical to those for PBEE students with Emory research advisors. In addition, the Emory co-advisor should work with the student and DGS in case there are any unexpected problems that may impact the completion of the student’s dissertation. The Emory co-advisor does not incur any financial obligation for the student by accepting this role; rather, the aim is to ensure the best possible academic experience for PBEE students working off-site.

Should a student wish to have a research advisor that is not a member of the Population Biology, Ecology, and Evolution Program and wish to remain in PBEE, they must receive explicit approval from the PD and PBEE Executive Committee. If a student wants to select an advisor from another program and transfer to that program, such a transfer can occur if approved by both programs and the GDBBS.

Although every effort is made to accommodate the student’s indicated preferences, in rare instances it may not be possible to assign a student to his or her first choice. A faculty member who already is serving as research advisor to more than one student may not be able to take on another due to a lack of physical resources. It is also possible that a faculty member may not have adequate financial resources to support the research of a new student entering the laboratory.

Students who for valid reasons are unable to make a choice by the Fall semester of the second year should submit a letter to the DGS requesting extension of the deadline for selecting an advisor and outlining reasons such an extension is needed. If the request is approved, the student will be given until the end of the Fall semester (second year) semester to select an advisor. In such cases, the student must submit the letter signed by the student and the research advisor before the beginning of the Spring semester. Students who do not choose an appropriate research advisor, obtain a commitment of financial support from that advisor, and gain approval of the selection by the Executive Committee by the end of the Spring semester (second year) will have their participation in the PBEE program terminated.

The matching of a student with a research advisor is not irrevocable. On rare occasions it may be in everyone's best interest to reassign the student to a different advisor. For example, research interests might change over time, so that
those of the student are no longer compatible with those of the research advisor. The student and advisor should discuss any problems with the director and/or members of the Executive Committee. If reassignment of the student seems advisable, the Executive Committee will be asked to review the request and, taking into account the wishes and concerns of all parties, will make the reassignment. Almost invariably the student will lose substantial time when changing laboratories and research projects, therefore reassignment of advisors should be viewed as a permissible, but an extreme and rare step.

X. Qualifying Examination

The LGS requires a student to demonstrate adequate intellectual mastery of his or her field of specialization and of appropriate supporting fields by passing a general doctoral qualifying examination before being admitted to candidacy for the Ph.D. degree. In PBEE, the qualifying examination consists of both written and oral exams that allow the program to assess whether the student demonstrates adequate mastery of PBEE to be advanced to candidacy. Completion of the qualifying examination process in PBEE requires four main steps. First, each student is required to form a qualifying exam committee composed of PBEE faculty members. Second, students are required to write a comprehensive review in an area related to PBEE. Third, students are required to write a research proposal outlining the main questions and line of research they are likely to pursue for their dissertation research. Fourth, the students are required to pass an oral examination that will be based upon both their general knowledge of PBEE, their review, and their research proposal. The Emory University Honor Code will be observed throughout the examination process. Details about each of these requirements are provided below.

A typical timeline would look something like the following:

- Jan 25 - Commentary Due
- Feb 22 - Proposal Due
- Feb 23 - Receive Feedback on Commentary
- March 8 - Revised Commentary Due
- (Spring Break March 9-13)
- March 22 - Receive Final Grade on Commentary
- March 15 - Receive Feedback on Proposal
- March 29 - Revised Proposal Due
- (Qualifying exam group study time available April 1-10)
- April 7 - Receive Final Grade on Proposal
- Oral Exam between April 10-24
- Oral Exam retake (if necessary) between May 1-15

These dates are approximate and will vary depending on the exact calendar year.

A. Establish Qualifying Examination Committee
Students are to provide a list of 6 PBEE faculty members who they would prefer to be members of their qualifying exam committee to the PD, DGS, and PA by November 15. If November 15 falls on a weekend, the due date is the following Monday. The members of this committee will evaluate the written exam materials and administer and judge their oral examination (see below for specific requirements). The PD and DGS will then use this list in conjunction with the listing of all the PBEE faculty members, to form the qualifying exam committee. The qualifying exam committee will consist of four PBEE faculty members, at least three of whom must be Emory faculty members. The goal of this approach is to ensure that the members of a qualifying exam committee represent the full diversity of the program in PBEE. The student’s research mentor will not be a member of this committee. The research
mentor should advise the student in the submission of appropriate faculty who may be best qualified to serve on the committee.

The PBEE PD, DGS, and PA will then 1) formally select the members of the qualifying exam committee, 2) set a date for the oral examination (mid-April), 3) set a date for a follow-up oral examination, if needed (at least two weeks from the original exam, mid-April to mid-May). This will be completed by December 15 of the students second year and the student will be notified of the results. If December 15 falls on a weekend, the due date is the following Monday.

B. Comprehensive PBEE Review

Students are required to write a review or commentary in an area related to PBEE. The goal of the review is not to simply summarize and provide citations to a large number of relevant publications. Rather, we intend this exercise as an opportunity for a student to synthesize current knowledge while providing a perspective and/or opinion about the direction of research in this area. What do we know? What do we not know? What experiments should be performed next? What analysis should be performed? Why are these research questions important and of interest to the broader scientific community? A passing PBEE comprehensive review will demonstrate the graduate student’s ability to:

- Identify an important problem in an area related to PBEE
- Synthesize the relevant scientific literature
- Think critically to develop a perspective
- Communicate these ideas in a written format

The specific topic of the review is to be selected by the student and should reflect their interests but should be broad, not merely reflecting their current research focus. The student is expected to work independently of their advisor in writing this review. However, the student should speak with their advisor, the PD, the DGS, and other PBEE faculty members to obtain advice and assistance in selecting an appropriate topic. Reviews written on topics that are not related to PBEE will constitute a failure. If a student has any questions about these requirements, they should speak with the DGS and PD to seek clarification.

The end goal of this exercise is for the student to have written a review that could be published in an appropriate journal. In many cases, students have been able to publish their reviews and this is strongly encouraged for all PBEE students. Thus, the specific format of the review is flexible, but should be based upon standard reviews/perspectives/opinion articles formats from journals such as the following:

- Nature Reviews
- Current Opinions
- Trends in Ecology and Evolution
- American Naturalist
- Cell
- Genetics
- American Journal of Human Genetics
- Annual Review of Ecology, Evolution and Systematics

This list above is representative, but not exhaustive. The student can obtain the format from the website for the journals. If a student wishes to write in a format from a journal not listed above, they should bring their proposal to the DGS and PD to gain approval. The text should be single spaced and no more than 20 pages in length (references do not count towards the total number of pages). While there is not a specified minimum length, the review should be well written and comprehensive. Please remember that in addition to evaluating the student, one of the goals of this exercise is for the student to write a review that can be submitted for publication.
This review will constitute the first half of the written exam portion of the qualifying examination. **The final version of the review should be submitted electronically as a Word document to the PD, DGS, and PA. The due date for the comprehensive review is January 26 of the student’s second year. If January 26 falls on a weekend, the review is due the following Monday.**

The review will be evaluated by the members of the qualifying exam committee within one month (due by February 24). The review will then be evaluated on a scale including: requiring major revisions (unsatisfactory), requiring minor revisions, no revisions necessary (satisfactory). Most work will require some revision, but as with an article submitted for publication, the work should be polished and complete. Each committee member will provide specific points to be addressed. The revised commentary will be due within approximately two weeks (March 9). Each committee member will provide a grade of satisfactory or unsatisfactory for the revision within 10 days. If the student does not receive a satisfactory grade from all committee members, the committee will meet to discuss the final grade. A grade of unsatisfactory is grounds for dismissal from the Ph.D. program.

**C. Research Proposal**

Students are required to write a well-developed and detailed research proposal that outlines at least a portion of the research they intend to pursue to complete their dissertation. **The main goal of this proposal is to assess the student’s ability to present a compelling, cogent set of research aims and hypotheses and to adequately address the methods needed to complete the research.** It is not expected that this will represent the final path of the graduate student’s research plan, but it is very helpful for the student if it is closely aligned with an already established research trajectory. A passing PBEE research proposal will demonstrate the graduate student’s ability to:

- Identify an important problem in an area related to PBEE
- Provided a compelling, feasible set of aims or questions to address a portion of that problem
- Put their research within the broader context of the field
- Propose the most appropriate methods to address the questions

The proposal should be in the format of either a standard RO1 NIH grant (see Section 5.5 at [http://grants.nih.gov/grants/funding/424/SF424_RR_Guide_General_Adobe_Verb.pdf](http://grants.nih.gov/grants/funding/424/SF424_RR_Guide_General_Adobe_Verb.pdf)) or a standard NSF Full grant proposal (see [http://www.nsf.gov/publications/pub_summ.jsp?ods_key=gpg](http://www.nsf.gov/publications/pub_summ.jsp?ods_key=gpg)). **The total length of the proposal should be 12 single-spaced pages. References cited do not count against the 12 page limit.** Use an Arial, Helvetica, Palatino Linotype, or Georgia typeface, a black font color, and a font size of 11 points or larger. The proposal should be detailed and consist of sections with the following titles:

If following the NIH format:

**Specific Aims (one page)**

State concisely the goals of the proposed research and summarize the expected outcome(s), including the impact that the results of the proposed research will have on the research field(s) involved.

List succinctly the specific objectives of the research proposed, e.g., to test a stated hypothesis, create a novel design, solve a specific problem, challenge an existing paradigm or clinical practice, address a critical barrier to progress in the field, or develop new technology.

**Significance**

Explain the importance of the problem or critical barrier to progress in the field that the proposed project addresses.

Explain how the proposed project will improve scientific knowledge and/or technical capability in one or more broad fields.
Describe how the concepts, methods, or technologies that drive this field will be changed if the proposed aims are achieved.

Innovation

Explain how the application challenges and seeks to shift current research paradigms. Describe any novel theoretical concepts, approaches or methodologies, instrumentation to be developed or used, and any advantage over existing methodologies or instrumentation. Explain any refinements, improvements, or new applications of theoretical concepts, approaches or methodologies or instrumentation.

Approach

Describe the overall strategy, methodology, and analyses to be used to accomplish the specific aims of the project. Include how data will be collected, analyzed, and interpreted. Discuss potential problems, alternative strategies, and benchmarks for success anticipated to achieve the aims. Describe any strategy to establish feasibility, and address the management of any high risk aspects of the proposed work.

References Cited

Bibliography listing references cited in research proposal. All authors names should be listed on each publication (do not use et al.). The length of this section is not included in the 12-page limit.

The Specific Aims should be contained on 1 page. The Significance, Innovation, and Approach sections will be 11 pages in length. Typically the Significance and Innovation sections together are about 1 to 2 pages in length. The Approach section constitutes the remainder of the proposal (about 9 - 10 pages) and includes any applicable preliminary data. Most proposals will have two or three Specific Aims.

If following the NSF format:

Project Summary (one page)

Each proposal must contain a summary of the proposed project not more than one page in length. The Project Summary consists of an overview and a statement on the intellectual merit of the proposed activity. A broader impacts section should NOT be included the PBEE research program. The overview includes a description of the activity that would result if the proposal were funded and a statement of objectives and methods to be employed. The statement on intellectual merit should describe the potential of the proposed activity to advance knowledge. The Project Summary should be written in the third person, informative to other persons working in the same or related fields, and, insofar as possible, understandable to a scientifically or technically literate lay reader. It should not be an abstract of the proposal.

Project Description (11 Pages)

The Project Description should provide a clear statement of the work to be undertaken and must include: objectives for the period of the proposed work, expected significance, and relation to the present state of knowledge in the field. The Project Description should outline the general plan of work, including the broad design of activities to be undertaken, and, where appropriate, provide a clear description of experimental methods and procedures. Include how data will be collected, analyzed, and interpreted. Proposers should address what they want to do, why they want to do it, how they plan to do it, how they will know if they succeed, and what benefits could accrue if the project is successful. The project activities may be based on previously established and/or innovative methods and approaches, but in either case must be well justified.
These issues apply to both the technical aspects of the proposal and the way in which the project may make broader contributions.

A typical format for the project description would include:

*Introduction to Proposed Work, Ending with Research Questions to be Addressed* (1 to 1.5 pages total)

Along with the Project Summary, this is the most important section of the grant. It should explain to the reviewer the importance of the research within the bigger context of the field and make it clear why this research is worth doing. Most proposals will have multiple questions to be addressed.

*Background Material on Field and Experimental System*

This section should highlight only the background material critical for putting the research in a bigger context of what has already been discovered in the field, highlighting outstanding questions and where your research fits in. Your own preliminary data may be incorporated here on in the experimental plan.

*Experimental plan*

The experimental plan should have a section for each question to be addressed. For each question, provide a brief overview, an outline of the experimental approach and expected outcomes. It may be appropriate to incorporate preliminary data in this section.

*Concluding Section on Intellectual Merit and Relevance to Field*

Questions about the format of the research proposal should be directed to the DGS and PD. **Failure to adhere to either the NIH or NSF the format outline will result in a grade of unsatisfactory on the research proposal.**

In some cases, students will have generated varying amounts of preliminary data that should be incorporated into the research proposal (consisting primarily of data generated by the student during their time in their mentor’s laboratory). **The proposal should be developed by the student and their tentative mentor starting the summer of their first year of graduate school and during their second year in graduate school.** While it is expected that there may be overlap between the student’s research plan and ongoing research being conducted in the mentor’s laboratory, the student’s proposal should not simply be cut/pasted from an existing grant proposal that the mentor has previously written.

The research proposal should result from the PBEE student’s work and ideas and will constitute the second half of the written exam portion of the qualifying examination. **The research proposal should be submitted to the DGS. The due date for this proposal is February 23 of the student’s second year. If February 23 falls on a weekend, the proposal is due the following Monday.**

The proposal will be graded by the members of the qualifying exam committee on the same scale as mentioned above for the review. Committee comments and grades will be submitted by March 16. If a revision is required, it will be due on March 30. Final Grades from the committee will be submitted within one week of this date. Each committee member will provide a grade of satisfactory or unsatisfactory for the revision. If the student does not receive a satisfactory grade from all committee members, the committee will meet to discuss the final grade. A grade of unsatisfactory is grounds for dismissal from the Ph.D. program.
D. Oral Examination
Approximately two weeks following the submission of the research proposal (in mid-April of their second year), each student will be administered an oral exam by the four members of their Qualifying Exam Committee. The PD or DGS will appoint one of the faculty members to act as the chair of the exam committee. The student’s mentor will also attend and observe the examination, act as a time-keeper, and may ask questions if they wish.

The oral examination is intended to explore the student’s general knowledge of PBEE, explore any areas of weakness in their comprehensive PBEE review, carefully examine their proposed research plan, including its relevance to the broader field and their choice of research methods, and assess their ability to express complex ideas and arguments in spoken form. A standard format will be used for all oral examinations. The oral exam structure will consist of at least two rounds of questions provided by the four examiners. Each question will be discussed for at most 15 minutes. Notwithstanding the time limit for each question, the exam format is free-form and any of the examining faculty may interact with the student in the course of answers to questions (even those asked by other faculty members). The first round of questions will focus broadly on topics in PBEE. The second round may focus more on the student’s research proposal, but may also include other topics. All areas of PBEE are fair game for questions, including at a minimum the student’s comprehensive review, their research proposal, and material covered in the PBEE core courses.

Upon completion of the exam, the student will leave the room. The research advisor will remain present during the question to provide clarification on the courses that the student has taken and the students’ previous experience. The research advisor will not take part in determining the overall grade. The qualifying exam committee will then discuss the student’s performance and decide whether the student passed or did not pass the exam. To pass this portion of the qualifying exam, the student must receive a “pass” from each of the four qualifying exam committee members. If the student did not pass the exam, they have one opportunity to retake the oral examination. This must be completed prior to May 15 of their second year. A student may retake the oral examination only once. Not passing the oral examination is grounds for dismissal from the Ph.D. program.

E. Preparation
Students are urged to prepare carefully for the qualifying examination. The written portions of the examination should be carefully researched and written with assistance provided by the research mentor. Additionally, PBEE faculty and other students are usually willing to read drafts and provide comments. Preparation for the oral examination usually consists of review of the principles and concepts of population biology, ecology, evolution, and other basic biological and mathematical sciences necessary to undertake a successful research career in PBEE. Students are also expected to have a firm understanding of all concepts and methods discussed in their comprehensive review and research proposal. A well-written comprehensive review and research proposal are central to the success in the oral examination.

In addition, students are strongly encouraged to practice the oral communication skills that will be necessary to pass the examination by presenting seminars based upon their rotation research projects. Third- and fourth-year students who have already taken the examination are expected to provide advice and help to the students as they prepare for their qualifying exam. Since many students will not previously have experienced an oral examination, a mock oral defense of the student’s general PBEE knowledge, comprehensive PBEE review, and their research proposal before the third- and fourth-year students will be extremely helpful. Students will generally find many people willing to help in their preparation for this important exam.
XI. Admission to Ph.D. Candidacy

After successfully passing both the written and oral portions of the qualifying examination, a student may become a candidate for the Ph.D. degree upon the recommendation of the student’s advisor and successfully completing all PBEE graduate course requirements. Application for admission to candidacy must include the designation of an advisor, appointment of a Dissertation Committee, and a proposed title for the dissertation. The application should be completed by the student, signed by the advisor, and submitted to the DGS. The form can be found on the LGS website (http://www.gs.emory.edu/academics/policies/candidacy.html) and on the PBEE website (http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/student-resources/index.html).

XII. Selection of Dissertation Committee

In consultation with the advisor, each student must select an advisory committee (i.e., Dissertation Committee) that will assist the student and advisor in formulating and executing an appropriate independent research project to fulfill the requirements of the doctoral program. This should be completed by the first week of classes in the Fall semester of the third year. The LGS Dissertation Committee form should be submitted to the DGS. The form can be found on the LGS website (http://www.gs.emory.edu/academics/policies/candidacy.html) and on the PBEE website (http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/student-resources/index.html). The committee must consist of at least four members of the faculty, including the research advisor who chairs the committee. At least three members of the Dissertation Committee should be members of the PBEE faculty. Although a committee of four members is the minimum requirement, having five members is encouraged. At the discretion of the student and research advisor, at most two faculty members on the Dissertation Committee can be selected from among faculty outside PBEE or Emory University.

The primary function of the advisory committee is to make a broad range of scientific expertise available to the student, to support the research efforts of the student, and help to guide the project to a successful conclusion. The advisory committee is also the primary body responsible for reading and evaluating the doctoral dissertation and for examining the student in the public oral defense of the doctoral dissertation.

The first committee meeting should occur no later than the last day of fall semester of the third year. This is particularly important to help set the general scientific direction of the student’s written proposal. After every thesis committee meeting the student is required to submit a Dissertation Committee Report Form to the PA. The form can be found on the PBEE website (http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/student-resources/index.html). Any changes to the membership of the Dissertation Committee require approval by the DGS and the Dean of the LGS. The form can be found on the LGS website (http://www.gs.emory.edu/academics/policies/candidacy.html) and on the PBEE website (http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/student-resources/index.html).
XIII. Student Research Proposal

During the Fall semester of the third year each student must present to his or her thesis committee a written proposal for an original research project and an oral defense of that proposal. The proposal should be based on the project that will form the student's Ph.D. thesis and may be identical or very similar to that provided for the oral qualifying examination. The dissertation proposal should be written by the student with regular discussions with their faculty research advisor and other committee members. The faculty research advisor, who should be actively mentoring the student, can be expected to have substantial input as to the content of all sections of the proposal. However, the spirit of the proposal is that it should primarily be the student's work. Thus, the advisor should not rewrite the proposal or simply cut/paste text from an existing grant proposal. Rather, the faculty advisor should provide written and verbal feedback and advice to the student to aid them with the development and presentation of their research ideas.

The student should keep the PD and DGS informed on their progress in forming a dissertation committee and the results of their meeting by providing copies of the required forms discussed above to the PA. The PBEE PA will make electronic copies of the form, store them in the student’s file, and provide copies to the PBEE PD and DGS. If the student has any difficulty, he or she needs to inform the PD, DGS, or PA immediately so that any issues can be resolved quickly.

The format of the proposal should be identical to the research proposal for the Qualifying Examination. As part of the first committee meeting in the fall semester, the thesis committee will meet to hear an oral defense of the written thesis proposal. The purpose of the defense and the written proposal is for the student, advisor, and thesis committee to reach an agreement on what would constitute a successful research project for completion of the Ph.D. in the PBEE program, and to establish a timeline for completion of the project.

XIV. Meetings with the Dissertation Advisory Committee

After successful completion of the qualifying examination and presentation of a research proposal, students should consult regularly with their Dissertation Committee to update them on the progress of their dissertation research. The format for this meeting need not be as formal as that of the oral qualifying exam, but should include a summary of the progress that the student has made, as well as an outline of the studies that the student and research advisor anticipate will be included in the final dissertation. The committee will give the student and advisor feedback and comments on what they consider necessary for successful completion of the dissertation research. Students are required to arrange a meeting with the Dissertation Committee at least once each year in the Fall semester beginning in the third year for the purpose of reviewing research progress. Typically students often prefer to meet with their Dissertation Committee twice a year, once during the Fall semester and once during the Spring semester (See Appendix A2 for Timeline and Milestones). For students in the third and fourth year, a Spring meeting is optional. For students in the fifth year and beyond, a Spring meeting is required.

After every thesis committee meeting the student is required to submit a Dissertation Committee Report Form to the PD/DGS/PA. The form can be found on the PBEE website (http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/student-resources/index.html). This form should be signed by both the advisor and the student. If the committee feels that the student is making reasonable and sufficient progress towards completing the dissertation research, this should be stated.

If the committee feels that the student is not making sufficient progress or that there are major issues that need to be dealt with, this should be stated on the form. The DGS will review, and if necessary, then transmit this letter to the Executive Committee. They will decide if the Executive Committee or selected members of the Executive Committee
should meet with members of the student's Dissertation Committee. If the student's research advisor and/or Dissertation Committee consider the student's research progress to be inadequate for continuation in the program, they can submit a letter to the Executive Committee requesting that the student’s participation in the program be terminated. This request will be considered by the Executive Committee after meeting with the student and in consultation with members of the student's advisory committee and other appropriate faculty and administrative personnel in the LGS.

Student Meeting Schedule

<table>
<thead>
<tr>
<th>When</th>
<th>What</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester, Third Year</td>
<td>First committee meeting required during the semester</td>
</tr>
<tr>
<td>Fall Semester*, Fourth Year</td>
<td>Committee Meeting Required</td>
</tr>
<tr>
<td>Fall Semester*, Fifth Year</td>
<td>Committee Meeting Required</td>
</tr>
<tr>
<td>Spring Semester*, Fifth Year</td>
<td>Committee Meeting Required (must occur by Feb 15th if plan to graduate this semester)</td>
</tr>
<tr>
<td>Every Fall and Spring Semester*, Sixth Year and Beyond</td>
<td>Committee Meeting Required, must occur within one month of start of semester if plan to graduate in that semester</td>
</tr>
</tbody>
</table>

*Exceptions will be granted to students who will be gone the ENTIRE semester for fieldwork. Planning should be done in advance to schedule a committee meeting before leaving or upon return.

XV. Individual Development Plans (IDP)

Goals and Objectives. The National Institute of Health encourages institutions to assist graduate students to achieve their career goals within the biomedical research workforce through the use of Individual Development Plans (IDPs). A professional development plan is an ongoing process and should be implemented throughout the entire graduate career to ensure continuous professional growth. Each student must take a lead in assessing and considering their own goals and related training objectives, and the student's advisor and committee members should initiate conversations on this topic with each student.

The PBEE IDP process consists of several steps.

1. myIDP: The myIDP website contains information and a survey [http://myidp.sciencecareers.org/](http://myidp.sciencecareers.org/) to help each student think about their future professional development. Students are required to take this survey in their second year of graduate school prior to the qualifying exam. The student must then fill out a short form (Career Development Initial Assessment) to discuss their career goals, perceived strengths and weaknesses, and training objectives. They will discuss their observations with their selected advisor or another faculty member. The Career Development Initial Assessment form
(http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/documents/pdfs/career-development-initial-assessment.pdf) must be submitted to PBEE prior to the qualifying exam.

2. Dissertation Committee meetings: Dissertation committee meetings are required at least yearly for PBEE students after passing their qualifying exam. Career development must be discussed at one committee meeting a year. Students will be required to include their goals and strategies in a slide presentation at the beginning of each Fall semester committee meeting (see template on the PBEE website http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/resources/forms.html), or they can print out a short document with the same information to be handed to each committee member.

The schedule is as follows:

<table>
<thead>
<tr>
<th>When</th>
<th>What</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall or Spring Semester, Second Year</td>
<td>Complete myIDP online, discuss strengths and weaknesses with advisor or a faculty member of student’s choosing, submit career development initial assessment form to program administrator prior to qualifying exam</td>
</tr>
<tr>
<td>Fall Semester, Third Year</td>
<td>Present career goals and training plan to committee</td>
</tr>
<tr>
<td>Fall Semester, Fourth Year and Beyond</td>
<td>Update committee on career goals and training plan</td>
</tr>
</tbody>
</table>

Graduate students will be encouraged to take part in sessions of the GDBBS IDP and Professionalization workshops, focusing on topics such as development of a five-year career plan, choosing rotations, choosing a mentor, selecting advanced courses as well as additional topics that arise during their graduate career on topics such as study skills, time management, professional expectations, work/life balance, dealing with stress, and how to handle difficult conversations.

Students and faculty must complete these requirements to maintain good standing in the program.

XVI. Teaching Assistant Training and Teaching Opportunity Program (TATTO)

The Teaching Assistant Training and Teaching Opportunity Program (TATTO) is administered by the LGS to provide teacher training and experience for doctoral students in the GDBBS. Completion of the TATTO program is required for the doctoral degree. Refer to the LGS website for more information (http://www.gs.emory.edu/professional_development/tatto/index.html).

XVII. Dissertation Research

The most important aspect of a student's training program is his or her thesis research. Other aspects of the program are designed to lead up to and provide preparation for this research work. Normally this research will begin no later
than the second summer in residence. The work must be an original contribution to scientific knowledge and should be of a quality that will lead to several publications in peer-reviewed scientific journals. Successful completion of the dissertation requires at least one published manuscript. Generally, thesis work will be performed on site at Emory. Completion of thesis work at other institutions will require the explicit approval of the Executive Committee and the PD.

XVIII. Submission of Ph.D. Dissertation

A. Guidelines for Writing and Submission

The general format of the dissertation includes the following sections: abstract, introduction, methods, results, discussion, and references. Each section can encompass one or more chapters, as appropriate. At the discretion of the Dissertation Committee and PD some of the methods, results and discussion may be represented by scientific papers on which the student is first author and which have been published or are in press in refereed journals. The dissertation must be submitted electronically. Figures and other illustrations must be of publication quality. More detailed directions as to the form of the dissertation are available from the LGS Office (http://www.gs.emory.edu/academics/policies/completion.html).

B. Submission of the Dissertation

After the dissertation has been read and approved by the thesis advisor, the student must give a copy to all members of the thesis committee. The dissertation must be complete at this time, including figures and references. A final copy of the dissertation is due to the committee at least three weeks before the defense. This should give committee members enough time to read the dissertation thoroughly before giving approval to defend. It is at the discretion of the committee to decide if another committee meeting is necessary prior to the defense.

Prior to scheduling the defense, all members of the committee must give provisional approval of the dissertation in writing. This is accomplished by submitting the PBEE Provisional Dissertation Approval Form to the PD/DGS/PA. The form can be found on the PBEE website (http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/student-resources/index.html). Once provisional approval has been given, the oral defense can be scheduled and announced. The oral defense must be scheduled at least two weeks after all committee members have signed the provisional approval form at a time when all members of the thesis committee can be present. These two weeks are necessary to give the program sufficient time to advertise the defense. The defense announcement (GDBBS Defense Flyer & GDBBS Defense Program) should be sent to the PA at least two weeks before the defense for distribution. The cost of preparing the dissertation is borne by the student.

It is recommended, but not required, that students have a reader of their dissertation from outside Emory who is familiar with the field of research. They should be invited to the final thesis committee meeting, if possible, and to the oral defense. The purpose of such an outside examiner is to raise the bar a bit by having an unbiased examiner who is an expert in the field. The implementation of this may seem unnecessary or cumbersome to some, but the graduate school is considering requiring this of all Ph.D. defenses.

XIX. Defense of Ph.D. Dissertation

As a final requirement for obtaining the Ph.D. degree, the candidate must orally defend the dissertation before the Dissertation Committee and other interested faculty and students. All PBEE students are expected to attend the dissertation defense for a fellow PBEE graduating student. Students are strongly encouraged to schedule their
dissertation defense as a seminar in the PBEE Seminar Series. In order to achieve this, the defense must usually be scheduled well in advance (often weeks or months) of the anticipated date. It is the candidate's responsibility to find a date and time that is appropriate and to notify the committee and faculty in writing. Although most dissertation defenses require less than two hours, a three-hour period should be scheduled in case additional time is necessary. The defense should occur at least two weeks before the LGS degree completion deadline. Refer to the LGS website for graduation deadlines (http://www.gs.emory.edu/academics/policies/completion.html).

The dissertation defense will consist of a public seminar with public questioning at the end, followed by private deliberations between the student and the thesis committee.

A. Public Dissertation Defense
The public dissertation defense is a formal scientific seminar. The atmosphere should be one that encourages critical questioning so that the student can demonstrate their expertise in an open forum. A member of the Executive Committee will chair the defense. The chair will outline the format of the defense and introduce the thesis advisor. The advisor will introduce the student and their research in a manner similar to other seminars. The defense consists of a short (~50 minute) oral presentation by the candidate of a summary of the project. After the student's presentation, the chair will invite questions from the audience. The committee and other members of the faculty will question the candidate on matters related to the dissertation research to assess the thoroughness of the candidate's knowledge and the quality of the work. The candidate is expected to be an authority in his or her research area, and successful defense of the dissertation requires the oral demonstration of that expertise.

B. Private Dissertation Defense
Following the public defense, the Executive Committee member will again chair the private defense in an administrative capacity. At this time any issues brought up at the public defense and any other questions that the thesis committee deems appropriate should be addressed. At no time should the advisor answer questions posed to the student. After the student has been dismissed, the student's performance will be discussed and evaluated by the committee. All committee members must confirm in writing that the student has successfully defended the dissertation. This is accomplished by submitting the Report of Completion of Requirements for Doctoral Degree form to the DGS. This form can be found on the LGS website (http://www.gs.emory.edu/academics/policies/candidacy.html) and on the PBEE website (http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/student-resources/index.html).

C. Revisions
In general, all revisions to the dissertation should be made prior to the defense. A final copy of the revised dissertation should be made available to interested faculty who are not on the Dissertation Committee one week prior to the final defense. However, if revisions have not been made in a satisfactory manner, as judged by the committee, final approval of the dissertation will be delayed until the appropriate revisions have been made and reviewed.

XX. Awarding of Degree

In order for a student to earn a degree in the PBEE Program, he or she must complete all the requirements of the PBEE program, the GDBBS and the LGS. The GDBBS and LGS requirements are contained within their respective handbooks that are available on their websites and also the PBEE website (http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/student-resources/index.html). The requirements for PBEE are in this handbook, and it is the responsibility of the student to obtain and fulfill the GDBBS requirements.
A. Deadlines
The LGS has several deadlines that must be met by the candidate during the semester in which the degree is to be awarded. These deadlines include: 1) last day to file application for degree; 2) last day for receipt of Degree Clearance Reports for Master's and Doctoral candidates (note: theses and dissertations must have final approval, and dissertations must be defended prior to this date); 3) degree candidates’ theses and dissertations due in the LGS Office. These deadlines are published in the Academic Calendar of the LGS Bulletin (http://www.gs.emory.edu/news_and_events/lgs_calendar.html). The degree completion requirements and forms are listed on the LGS website (All of the requirements for obtaining a Ph.D. are published in the LGS Handbook. Please take the time to read the section entitled “Degree Completion.”

B. Degrees
The Program in Population Biology, Ecology, and Evolution offers programs for two degrees: The Master of Science (M.S.) and the Doctor of Philosophy (Ph.D.). The program of study is primarily designed for the Ph.D. degree. Students seeking only the M.S. degree are not ordinarily accepted into the Program. Under certain circumstances, a student may be permitted to work for a terminal M.S. degree that requires submission of an appropriate thesis.

1. Master of Science
A student who fails the Qualifying Examination may petition the faculty for permission to complete a Master’s thesis. In addition, a student who passes the qualifying examination but chooses not to complete the doctoral program may request permission to complete a Master’s thesis. If the petition is approved, such a student must form a Master’s Dissertation Committee consisting of a faculty advisor and three additional members of the program faculty. The student must complete a research project approved by the committee and write a Master’s thesis. The Master’s degree in the GDBBS is a research-based degree and a “publishable” body of scholarly experimental work is written up in the same format as a Dissertation, except that the length and depth of the work is often less. Guidelines for writing and submission of a Master’s thesis are the same as those for the Doctoral dissertation.

2. Doctor of Philosophy
When a student has completed all of the course requirements and has submitted and successfully defended his or her Ph.D. dissertation, the Director will submit the appropriate form to the Dean of the LGS. However, formal application for a degree must be made at the beginning of the semester in which the degree is to be conferred. In addition, the student must be registered during the semester in which the degree is to be conferred.

XXI. Tenure of Graduate Studies

Students and their advisors should aim for completion of their graduate studies within a period of five years. M.D./Ph.D. students should aim for completion of the program within four years after beginning the graduate school portion of their studies. Most graduate students should be able to complete their dissertation research and defense within this period of time. If it becomes evident to a student and his or her advisor that successful defense of the dissertation cannot occur before August 31 of the sixth year, the student must submit a formal petition to the Executive Committee for an extension of this time limit. This petition should be in writing and should include a statement as to the reason for the student's inability to complete the program within six years and a clear justification for the extension. The deadline for submission of this request is January 1 of the student's sixth year in the program. Also, the petition should include a projected date for the defense. When considering the petition, the Executive Committee will consult with members of the student's Dissertation Committee to determine whether they consider the projected date of the defense to be realistic and attainable.
XXII. Expectations of Performance

A. Student Performance
Students are expected to perform satisfactorily in required and elective course work. In most cases, this includes active participation in classroom and seminar discussions as a way of contributing to the scientific environment of the University and to the development of the student. Students are also expected to actively participate in the various events and seminars sponsored by the program. Students should be motivated to continually develop their scientific independence and creativity. This is demonstrated by active interest in and knowledge of the current scientific literature and by planning and performing original research. The student’s research results should be published as independent contributions to the scientific literature. It is obvious that to accomplish these goals, students need to acquire and develop written and oral communication skills.

Students are also expected to make continuing progress throughout the program. This includes selection of an advisor and Dissertation Committee in a timely fashion and submission and defense of the dissertation soon after completion of laboratory research. We anticipate most students will complete the graduate program in approximately 5 years. LGS policy mandates that students must successfully defend their dissertation within eight years of entering advanced standing. Students are encouraged to show a dedication and enthusiasm for their research projects and to continually strive for the excellence and discipline that will make them competitive in the modern scientific world. In addition, students should be familiar with the regulations governing University-student relationships and with the LGS Honor and Conduct Codes as published in the LGS Handbook (http://www.gs.emory.edu/academics/policies/index.html).

B. Faculty Performance
Students may expect the faculty to enthusiastically give their time and expertise. This is done both in terms of presenting well-prepared, current formal courses and by providing individual instruction and consultation in the laboratory such that students can maintain progress in their research. The faculty provide laboratory space, equipment, and financial support so students in training can conduct their research. In many cases, student stipends are also provided directly by individual faculty members’ research grants. Importantly, faculty should serve as professional role models and encourage and advise students to fully develop their scientific talents. As part of providing a stimulating scientific environment, the faculty conducts a colloquium series featuring well-known scientists in PBEE and related areas. Finally, faculty should counsel students in determining the direction their postdoctoral careers might take.

Faculty are also expected to provide reasonable and clear guidelines for the graduate program and to administer LGS requirements at the program level. Student grievances and appeals should be addressed directly to the PD, DGS, or members of the Executive Committee.

XXIII. Student - Faculty Communication

Students usually have questions and suggestions that can assist the faculty in achieving and maintaining a high-quality training program. Student feedback about all aspects of the program, and particularly about courses, is very important in helping the faculty recognize the strengths and weaknesses in the current program. Student-faculty communication is, therefore, strongly encouraged, and students are urged to make their views known to the faculty. Faculty will request feedback, but when they do not hear from students they often assume that there are no problems in the current program.
The student's advisor or members of his or her dissertation committee are in the best position to discuss research or personal problems. The PD, the DGS, or members of the Executive Committee are obvious first choices to approach about procedure and policy questions. However, all faculty attempt to be readily available to meet with students, within the restrictions of their schedules. If a faculty member cannot see a student immediately, he or she will make an appointment to meet with the student at the earliest available time. Please use the faculty as a resource.

XXIV. Financial Support

Stipends and tuition fellowships, awarded to students on the basis of academic merit, are intended to cover basic living expenses and tuition. With the exception of special awards, such as the Woodruff Fellowship, stipend levels are set by the Division based upon the availability of funds from LGS and university sources. The faculty also encourage and assist students in obtaining individual stipend support from extramural sources, such as federal agencies and private foundations.

It is the policy of the Division to continue support for all students in good standing working for a Ph.D up to year six, with seventh year support available in special circumstances. Financial support beginning in the third year in residence is partially the responsibility of the student’s thesis advisor. However, no student in good standing has ever been refused support by the Division. Typical sources of support after the second year are from research grant funds of the student’s advisor or individual fellowships awarded to the student, or through graduate research assistantships from outside funding agencies, e.g., the CDC, NSF, Dean’s teaching award, and other departmental or programmatic fellowships.

Financial support may be withdrawn from students whose performance in the graduate program is unsatisfactory as stipulated in the sections above. Financial support is normally provided only to full-time students working toward the doctoral degree.

XXV. Policy Regarding Outside Employment

Stipend and tuition fellowships are awarded to allow students to devote full time to the graduate program and to complete the requirements for the Ph.D. degree in as short a time as is consistent with adequate training and research progress. The student should not engage in additional employment while receiving a stipend through the graduate program, regardless of the source of that stipend. Such outside employment generally causes a serious distraction from the educational process. Graduate education and research are by necessity self-motivated processes and the distractions of outside employment can interfere with the ability of students to prepare satisfactorily for their future professional careers.

If additional income is absolutely necessary, students are encouraged to consider the possibility of low-interest student loans. Advice about such loans can be obtained from the financial aid office of the University. If a student feels strongly that outside employment is necessary while in the graduate program, the student must discuss the need with his or her advisor and submit a formal request to the Executive Committee at least 30 days in advance of beginning employment. The petition must be fully supported and signed by the student’s advisor; however, the student should be aware that such requests will only be granted if it is deemed appropriate and will further the student’s ultimate career goals. Also, such requests will normally be considered only for students in Advanced Standing. If outside employment is necessary and allowed by the Executive Committee, the student must not allow it to interfere with high standards of performance.
XXVI. Leaving the Program

A. Beyond the Ph.D
The question of what direction a student's career will take following completion of the doctoral training program should arise early and become increasingly important as training progresses. It is never too early to begin to consider career options and to plan a curriculum accordingly. It is common for students receiving the Ph.D. to take a postdoctoral research training position in order to pursue a specific research interest, as well as to acquire additional techniques and expertise to prepare themselves further for a career of independent research. Such postdoctoral training is especially valuable and is usually essential for a career in academic research. Some students take permanent positions in industrial or government research laboratories immediately after receiving the Ph.D. degree. Others decide to enter further advanced degree programs, such as medical school. Career objectives can best be realized through the careful planning of a student's graduate training program. The PD, DGS, Executive Committee, and all members of the faculty stand ready to advise students on career options. Students are strongly encouraged to seek this advice at any time during their training.

B. Poor Performance
The DGS will review the progress of students once each semester, or more frequently if warranted. All students must meet the LGS's definitions of good standing and due progress to continue in the program. Degree candidates must also be conducting satisfactory research as judged by the advisor and dissertation committee. Students who are experiencing difficulty in the program are strongly encouraged to seek assistance at their earliest opportunity from the Director, DGS, and members of the Executive Committee, their advisor, or other faculty. Every effort will be made to assist students in meeting the performance standards that are required for continuation in the program. However, a student who does not maintain an adequate standard of work or make due progress will be placed on probation, and financial support may be withdrawn. The student will be informed in writing of the conditions of the probation, and a timetable for elimination of the probationary status will be established. A student who fails to meet the conditions of the probation will not be allowed to continue in the program.

A student who fails either the written or oral part of the doctoral qualifying examination is considered to be not to be making due progress and will be dismissed from the program. Such a student may petition the faculty to retake the examination if the student believes that conditions beyond his or her control adversely affected the performance (see section XI). A student who fails the reexamination will be removed from the program.

Appeals of the Executive Committee's decisions in these matters may be made to the LGS, as outlined in the LGS Bulletin.

XXVII. University Requirements and Other Policies

Every effort has been made to make this document as accurate and complete as possible. Formal requirements and other policies not addressed in this handbook can be found in the GDBBS and/or LGS handbooks. Policies are subject to change without notice.
Appendix

A1. PBEE Graduate Student Timeline and Milestones

PBEE Student Degree Progress Guide
2015-2016

At the beginning of each semester, there will be a student meeting to review the upcoming requirements and milestones for each class. Please use this guide to review your degree progress and discuss any questions or concerns you have. If you would like to review your progress individually with the Program Director, DGS, and/or PA, please contact us to schedule a meeting.

PBEE Program Director: Nicole Gerardo, Ph.D.
Rollins Research Center, Room 1111
404-727-0394

PBEE DGS (Interim): Tim Read, Ph.D.
Claudia Nance Rollins, Room 5051
404-727-9706

Submit all forms to: Sara Howard
PBEE Program Administrator
Dental Building (1462 Clifton Rd.), Suite 300A
404-727-2802

FORMS

| PBEE | http://www.biomed.emory.edu/PROGRAM_SITES/PBEE/student-resources/index.html |
| GDBBS | https://secure.web.emory.edu/biomed/intranet/students/index.html |
| LGS | http://www.gs.emory.edu/academics/policies/index.html |

HANDBOOKS

| GDBBS | https://secure.web.emory.edu/biomed/intranet/handbooks/division.htm |
| LGS | http://www.gs.emory.edu/academics/policies/index.html |
### YEAR 1

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Form</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPE 600: Core Course</td>
<td>N/A</td>
<td>August 21, 2015</td>
</tr>
<tr>
<td>Lab Rotation 1 <em>(September 1 - October 31)</em></td>
<td>PBEE Rotation Plan</td>
<td>September 5</td>
</tr>
<tr>
<td></td>
<td>PBEE Rotation Summary</td>
<td>October 31</td>
</tr>
<tr>
<td>Lab Rotation 2 <em>(November 1 - January 31)</em></td>
<td>PBEE Rotation Plan</td>
<td>November 7</td>
</tr>
<tr>
<td></td>
<td>PBEE Rotation Summary</td>
<td>January 31</td>
</tr>
<tr>
<td>Lab Rotation 3 <em>(February 1 - April 30)</em></td>
<td>PBEE Rotation Plan</td>
<td>February 6</td>
</tr>
<tr>
<td></td>
<td>PBEE Rotation Summary</td>
<td>April 30</td>
</tr>
<tr>
<td>Select Faculty Advisor</td>
<td>GDBBS Advisor Assignment Form</td>
<td>May 15</td>
</tr>
<tr>
<td>PBEE Ethics Training</td>
<td>N/A</td>
<td>Fall &amp; Spring</td>
</tr>
</tbody>
</table>

### YEAR 2

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Form</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>TATT 600: Workshop</td>
<td>N/A</td>
<td>August 19-20, 2015</td>
</tr>
<tr>
<td>Submit Names for Qualifying Exam Committee</td>
<td>Email a list of 6 PBEE faculty (in order of preference) to PD/DGS/PA</td>
<td>November 15</td>
</tr>
<tr>
<td>Establish Qualifying Exam Committee</td>
<td>PD/DGS/PA will email you completed PBEE Qual Exam Committee Form</td>
<td>December 15</td>
</tr>
<tr>
<td>Drafts to Advisor</td>
<td>Send advisor draft of Comprehensive Review and at least an outline of Research Proposal</td>
<td>December 15</td>
</tr>
<tr>
<td>Comprehensive Review</td>
<td>Email document to PD/DGS/PA</td>
<td>January 26</td>
</tr>
<tr>
<td>Research Proposal</td>
<td>Email document to PD/DGS/PA</td>
<td>February 23</td>
</tr>
<tr>
<td>Oral Exam</td>
<td>PD/DGS/PA will email you Oral Exam date</td>
<td>April 10-24</td>
</tr>
<tr>
<td>Select Dissertation Committee</td>
<td>LGS Dissertation Committee Form</td>
<td>June 1</td>
</tr>
<tr>
<td>Reach Candidacy</td>
<td>LGS Admission to Candidacy Form</td>
<td>June 1</td>
</tr>
<tr>
<td>TATT 605/610: Teaching Assistant/Associate-ship</td>
<td>N/A</td>
<td>Fall or Spring</td>
</tr>
<tr>
<td>PBEE Ethics Training</td>
<td>N/A</td>
<td>Fall &amp; Spring</td>
</tr>
</tbody>
</table>
### YEAR 3

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Form</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Committee Meeting</td>
<td>PBEE Dissertation Committee Report</td>
<td>By end of fall</td>
</tr>
<tr>
<td>Dissertation Committee Meeting</td>
<td>PBEE Dissertation Committee Report</td>
<td>By end of spring</td>
</tr>
<tr>
<td>PBEE Ethics Training</td>
<td>N/A</td>
<td>Fall &amp; Spring</td>
</tr>
</tbody>
</table>

### YEAR 4

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Form</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation Committee Meeting</td>
<td>PBEE Dissertation Committee Report</td>
<td>By end of fall</td>
</tr>
<tr>
<td>Dissertation Committee Meeting</td>
<td>PBEE Dissertation Committee Report</td>
<td>By end of spring</td>
</tr>
<tr>
<td>PBEE Ethics Training</td>
<td>N/A</td>
<td>Fall &amp; Spring</td>
</tr>
</tbody>
</table>

### YEAR 5+

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Form</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule Dissertation Defense</td>
<td>PBEE Provisional Dissertation Approval</td>
<td>At least 4 weeks before defense</td>
</tr>
<tr>
<td></td>
<td>GDBBS Defense Flyer &amp; Program Templates</td>
<td>At least 2 weeks before defense</td>
</tr>
<tr>
<td></td>
<td>(email to PA)</td>
<td></td>
</tr>
<tr>
<td>Dissertation Defense</td>
<td>LGS Report of Completion of Doctoral Degree (submit original copy to PA)</td>
<td>Defense should occur at least 2 weeks before LGS deadline</td>
</tr>
<tr>
<td>Plan for Graduation</td>
<td>LGS Application for Degree (online in OPUS)</td>
<td>Varies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fall: September</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spring: February</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summer: July</td>
</tr>
<tr>
<td>PBEE Ethics Training</td>
<td>N/A</td>
<td>Fall &amp; Spring</td>
</tr>
</tbody>
</table>

### Planning for Graduation:
- Review LGS Degree Completion requirements and policies:  
  [http://www.gs.emory.edu/academics/policies/completion.html](http://www.gs.emory.edu/academics/policies/completion.html)
- Refer to LGS Calendar for graduation deadlines and due dates:  
  [http://www.gs.emory.edu/news_and_events/lgs_calendar.html](http://www.gs.emory.edu/news_and_events/lgs_calendar.html)

### Questions about Degree Completion:
Monica Taylor (GDBBS) & Queen Watson (LGS)
mtayl02@emory.edu, queen.watson@emory.edu