Immune Cells Deliver Cancer Drugs to the Brain

Glioblastomas, highly aggressive malignant brain tumors, have a high propensity for recurrence and are associated with low survival rates. Even when surgeons remove these tumors, deeply infiltrated cancer cells often remain and contribute to relapse. By harnessing neutrophils, a critical player in the innate immune response, scientists have devised a way to deliver drugs to kill these residual cells, according to a mouse study published in Nature Nanotechnology.

Neutrophils, the most common type of white blood cell, home in to areas of injury and inflammation to fight infections. Prior studies in both animals and humans have reported that neutrophils can cross the blood-brain barrier, and although these cells are not typically attracted to glioblastomas, they are recruited at sites of tumor removal in response to post-operative inflammation. 

“The strength [of this method] is that neutrophils are the most abundant white blood cells, so it’s possible to collect them from a patient’s blood in significant amounts,” says Erwin Van Meir, a neuro-oncologist at Emory University who also did not participate in the work. However, he adds, in their animal models the authors used approximately ten times the number of neutrophils found in normal mouse circulation, meaning the amount of blood needed for this type of procedure in humans could be quite substantial. Dr. Van Meir is also a faculty member in the CB, GMB and NS programs.

Click here to view the full story in The Scientist.